
Algorithm.py Documentation
Release 1.2.0

Chad Whitacre et al.

Sep 27, 2017

Contents

1 Installation 3

2 Tutorial 5
2.1 Modifying an Algorithm . 6
2.2 Exception Handling . 7

3 API Reference 9

Python Module Index 15

i

ii

Algorithm.py Documentation, Release 1.2.0

Model an algorithm as a list of functions.

Contents 1

Algorithm.py Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Installation

algorithm is available on GitHub and on PyPI:

$ pip install algorithm

We test against Python 2.6, 2.7, 3.3, 3.4, and 3.5.

algorithm is MIT-licensed.

3

https://github.com/AspenWeb/algorithm.py
https://pypi.python.org/pypi/algorithm
https://travis-ci.org/AspenWeb/algorithm.py

Algorithm.py Documentation, Release 1.2.0

4 Chapter 1. Installation

CHAPTER 2

Tutorial

This module provides an abstraction for implementing arbitrary algorithms as a list of functions that operate on a
shared state dictionary. Algorithms defined this way are easy to arbitrarily modify at run time, and they provide
cascading exception handling.

To get started, define some functions:

>>> def foo():
... return {'baz': 1}
...
>>> def bar():
... return {'buz': 2}
...
>>> def bloo(baz, buz):
... return {'sum': baz + buz}
...

Each function returns a dict, which is used to update the state of the current run of the algorithm. Names from
the state dictionary are made available to downstream functions via dependency_injection. Now make an
Algorithm object:

>>> from algorithm import Algorithm
>>> blah = Algorithm(foo, bar, bloo)

The functions you passed to the constructor are loaded into a list:

>>> blah.functions
[<function foo ...>, <function bar ...>, <function bloo ...>]

Now you can use run to run the algorithm. You’ll get back a dictionary representing the algorithm’s final state:

>>> state = blah.run()
>>> state['sum']
3

Okay!

5

http://dependency-injection-py.readthedocs.io/en/latest/index.html#module-dependency_injection

Algorithm.py Documentation, Release 1.2.0

Modifying an Algorithm

Let’s add two functions to the algorithm. First let’s define the functions:

>>> def uh_oh(baz):
... if baz == 2:
... raise heck
...
>>> def deal_with_it(exception):
... print("I am dealing with it!")
... return {'exception': None}
...

Now let’s interpolate them into our algorithm. Let’s put the uh_oh function between bar and bloo:

>>> blah.insert_before('bloo', uh_oh)
>>> blah.functions
[<function foo ...>, <function bar ...>, <function uh_oh ...>, <function bloo ...>]

Then let’s add our exception handler at the end:

>>> blah.insert_after('bloo', deal_with_it)
>>> blah.functions
[<function foo ...>, <function bar ...>, <function uh_oh ...>, <function bloo ...>,
→˓<function deal_with_it ...>]

Just for kicks, let’s remove the foo function while we’re at it:

>>> blah.remove('foo')
>>> blah.functions
[<function bar ...>, <function uh_oh ...>, <function bloo ...>, <function deal_with_
→˓it ...>]

If you’re making extensive changes to an algorithm, you should feel free to directly manipulate the list of functions,
rather than using the more cumbersome insert_before, insert_after, and remove methods. We could
have achieved the same result like so:

>>> blah.functions = [blah['bar']
... , uh_oh
... , blah['bloo']
... , deal_with_it
...]
>>> blah.functions
[<function bar ...>, <function uh_oh ...>, <function bloo ...>, <function deal_with_
→˓it ...>]

Either way, what happens when we run it? Since we no longer have the foo function providing a value for bar, we’ll
need to supply that using a keyword argument to run:

>>> state = blah.run(baz=2)
I am dealing with it!

6 Chapter 2. Tutorial

Algorithm.py Documentation, Release 1.2.0

Exception Handling

Whenever a function raises an exception, like uh_oh did in the example above, run captures the exception and
populates an exception key in the current algorithm run state dictionary. While exception is not None, any
normal function is skipped, and only functions that ask for exception get called. It’s like a fast-forward. So in our
example deal_with_it got called, but bloo didn’t, which is why there is no sum:

>>> 'sum' in state
False

If we run without tripping the exception in uh_oh then we have sum at the end:

>>> blah.run(baz=5)['sum']
7

2.2. Exception Handling 7

Algorithm.py Documentation, Release 1.2.0

8 Chapter 2. Tutorial

CHAPTER 3

API Reference

class algorithm.Algorithm(*functions, **kw)
Model an algorithm as a list of functions.

Parameters

• functions – a sequence of functions in the order they are to be run

• raise_immediately (bool) – Whether to re-raise exceptions immediately. False by
default, this can only be set as a keyword argument

Each function in your algorithm must return a mapping or None. If it returns a mapping, the mapping will
be used to update a state dictionary for the current run of the algorithm. Functions in the algorithm can use
any name from the current state dictionary as a parameter, and the value will then be supplied dynamically via
dependency_injection. See the run method for details on exception handling.

__getitem__(name)
Return the function in the functions list named name, or raise FunctionNotFound.

>>> def foo(): pass
>>> algo = Algorithm(foo)
>>> algo['foo'] is foo
True
>>> algo['bar']
Traceback (most recent call last):
...

FunctionNotFound: The function 'bar' isn't in this algorithm.

debug(function)
Given a function, return a copy of the function with a breakpoint immediately inside it.

Parameters function (function) – a function object

This method wraps the module-level function algorithm.debug, adding three conveniences.

First, calling this method not only returns a copy of the function with a breakpoint installed, it actually
replaces the old function in the algorithm with the copy. So you can do:

9

http://dependency-injection-py.readthedocs.io/en/latest/index.html#module-dependency_injection

Algorithm.py Documentation, Release 1.2.0

>>> def foo():
... pass
...
>>> algo = Algorithm(foo)
>>> algo.debug(foo)
<function foo at ...>
>>> algo.run()
(Pdb)

Second, it provides a method on itself to install via function name instead of function object:

>>> algo = Algorithm(foo)
>>> algo.debug.by_name('foo')
<function foo at ...>
>>> algo.run()
(Pdb)

Third, it aliases the by_name method as __getitem__ so you can use mapping access as well:

>>> algo = Algorithm(foo)
>>> algo.debug['foo']
<function foo at ...>
>>> algo.run()
(Pdb)

Why would you want to do that? Well, let’s say you’ve written a library that includes an algorithm:

>>> def foo(): pass
...
>>> def bar(): pass
...
>>> def baz(): pass
...
>>> blah = Algorithm(foo, bar, baz)

And now some user of your library ends up rebuilding the functions list using some of the original functions
and some of their own:

>>> def mine(): pass
...
>>> def precious(): pass
...
>>> blah.functions = [blah['foo']
... , mine
... , blah['bar']
... , precious
... , blah['baz']
...]

Now the user of your library wants to debug blah['bar'], but since they’re using your code as a library
it’s inconvenient for them to drop a breakpoint in your source code. With this feature, they can just insert
.debug in their own source code like so:

>>> blah.functions = [blah['foo']
... , mine
... , blah.debug['bar']
... , precious

10 Chapter 3. API Reference

Algorithm.py Documentation, Release 1.2.0

... , blah['baz']

...]

Now when they run the algorithm they’ll hit a pdb breakpoint just inside your bar function:

>>> blah.run()
(Pdb)

classmethod from_dotted_name(dotted_name, **kw)
Construct a new instance from functions defined in a Python module.

Parameters

• dotted_name – the dotted name of a Python module that contains functions that will be
added to algorithm in the order of appearance.

• kw – keyword arguments are passed through to the default constructor

This is a convenience constructor to instantiate an algorithm based on functions defined in a regular Python
file. For example, create a file named blah_algorithm.py on your PYTHONPATH:

def foo():
return {'baz': 1}

def bar():
return {'buz': 2}

def bloo(baz, buz):
return {'sum': baz + buz}

Then pass the dotted name of the file to this constructor:

>>> blah = Algorithm.from_dotted_name('blah_algorithm')

All functions defined in the file whose name doesn’t begin with _ are loaded into a list in the order they’re
defined in the file, and this list is passed to the default class constructor.

>>> blah.functions
[<function foo ...>, <function bar ...>, <function bloo ...>]

For this specific module, the code above is equivalent to:

>>> from blah_algorithm import foo, bar, bloo
>>> blah = Algorithm(foo, bar, bloo)

get_names()
Returns a list of the names of the functions in the functions list.

insert_after(name, *newfuncs)
Insert newfuncs in the functions list after the function named name, or raise
FunctionNotFound.

>>> def foo(): pass
>>> algo = Algorithm(foo)
>>> def bar(): pass
>>> algo.insert_after('foo', bar)
>>> algo.get_names()
['foo', 'bar']
>>> def baz(): pass

11

Algorithm.py Documentation, Release 1.2.0

>>> algo.insert_after('bar', baz)
>>> algo.get_names()
['foo', 'bar', 'baz']
>>> def bal(): pass
>>> algo.insert_after(Algorithm.START, bal)
>>> algo.get_names()
['bal', 'foo', 'bar', 'baz']
>>> def bah(): pass
>>> algo.insert_before(Algorithm.END, bah)
>>> algo.get_names()
['bal', 'foo', 'bar', 'baz', 'bah']

insert_before(name, *newfuncs)
Insert newfuncs in the functions list before the function named name, or raise
FunctionNotFound.

>>> def foo(): pass
>>> algo = Algorithm(foo)
>>> def bar(): pass
>>> algo.insert_before('foo', bar)
>>> algo.get_names()
['bar', 'foo']
>>> def baz(): pass
>>> algo.insert_before('foo', baz)
>>> algo.get_names()
['bar', 'baz', 'foo']
>>> def bal(): pass
>>> algo.insert_before(Algorithm.START, bal)
>>> algo.get_names()
['bal', 'bar', 'baz', 'foo']
>>> def bah(): pass
>>> algo.insert_before(Algorithm.END, bah)
>>> algo.get_names()
['bal', 'bar', 'baz', 'foo', 'bah']

remove(*names)
Remove the functions named name from the functions list, or raise FunctionNotFound.

run(_raise_immediately=None, _return_after=None, **state)
Run through the functions in the functions list.

Parameters

• _raise_immediately (bool) – if not None, will override any default for
raise_immediately that was set in the constructor

• _return_after (str) – if not None, return after calling the function with this name

• state (dict) – remaining keyword arguments are used for the initial state dictionary
for this run of the algorithm

Raises FunctionNotFound, if there is no function named _return_after

Returns a dictionary representing the final algorithm state

The state dictionary is initialized with three items (their default values can be overriden using keyword
arguments to run):

•algorithm - a reference to the parent Algorithm instance

•state - a circular reference to the state dictionary

12 Chapter 3. API Reference

Algorithm.py Documentation, Release 1.2.0

•exception - None

For each function in the functions list, we look at the function signature and compare it to the current
value of exception in the state dictionary. If exception is None then we skip any function that asks
for exception, and if exception is not None then we only call functions that do ask for it. The upshot
is that any function that raises an exception will cause us to fast-forward to the next exception-handling
function in the list.

Here are some further notes on exception handling:

•If a function provides a default value for exception, then that function will be called whether or
not there is an exception being handled.

•You should return {'exception': None} to reset exception handling. Under Python 2 we will
call sys.exc_clear for you (under Python 3 exceptions are cleared automatically at the end of
except blocks).

•If an exception is raised by a function handling another exception, then exception is set to the new
one and we look for the next exception handler.

•If exception is not None after all functions have been run, then we re-raise it.

•If raise_immediately evaluates to True (looking first at any per-call
_raise_immediately and then at the instance default), then we re-raise any exception
immediately instead of fast-forwarding to the next exception handler.

•When an exception occurs, the functions that accept an exception argument will be called from
inside the except: block, so you can access sys.exc_info (which contains the traceback) even
under Python 3.

exception algorithm.FunctionNotFound
Used when a function is not found in an algorithm function list (subclasses KeyError).

algorithm.debug(function)
Given a function, return a copy of the function with a breakpoint immediately inside it.

Parameters function (function) – a function object

Okay! This is fun. :-)

This is a decorator, because it takes a function and returns a function. But it would be useless in situations where
you could actually decorate a function using the normal decorator syntax, because then you have the source code
in front of you and you could just insert the breakpoint yourself. It’s also pretty useless when you have a function
object that you’re about to call, because you can simply add a set_trace before the function call and then
step into the function. No: this helper is only useful when you’ve got a function object that you want to debug,
and you have neither the definition nor the call conveniently at hand. See the method Algorithm.debug for
an explanation of how this situation arises with the algorithm module.

For our purposes here, it’s enough to know that you can wrap any function:

>>> def foo(bar, baz):
... return bar + baz
...
>>> func = debug(foo)

And then calling the function will drop you into pdb:

>>> func(1, 2)
(Pdb)

The fun part is how this is implemented: we dynamically modify the function’s bytecode to insert the statements
import pdb; pdb.set_trace(). Neat, huh? :-)

13

Algorithm.py Documentation, Release 1.2.0

14 Chapter 3. API Reference

Python Module Index

a
algorithm, 3

15

Algorithm.py Documentation, Release 1.2.0

16 Python Module Index

Index

Symbols
__getitem__() (algorithm.Algorithm method), 9

A
Algorithm (class in algorithm), 9
algorithm (module), 1

D
debug() (algorithm.Algorithm method), 9
debug() (in module algorithm), 13

F
from_dotted_name() (algorithm.Algorithm class

method), 11
FunctionNotFound, 13

G
get_names() (algorithm.Algorithm method), 11

I
insert_after() (algorithm.Algorithm method), 11
insert_before() (algorithm.Algorithm method), 12

R
remove() (algorithm.Algorithm method), 12
run() (algorithm.Algorithm method), 12

17

	Installation
	Tutorial
	Modifying an Algorithm
	Exception Handling

	API Reference
	Python Module Index

